Shape Matching by Variational Computation of Geodesics on a Manifold
نویسندگان
چکیده
Klassen et al. [9] recently developed a theoretical formulation to model shape dissimilarities by means of geodesics on appropriate spaces. They used the local geometry of an infinite dimensional manifold to measure the distance dist(A,B) between two given shapes A and B. A key limitation of their approach is that the computation of distances developed in the above work is inherently unstable, the computed distances are in general not symmetric, and the computation times are typically very large. In this paper, we revisit the shooting method of Klassen et al. for their angle-oriented representation. We revisit explicit expressions for the underlying space and we propose a gradient descent algorithm to compute geodesics. In contrast to the shooting method, the proposed variational method is numerically stable, it is by definition symmetric, and it is up to 1000 times faster.
منابع مشابه
Analysis of Planar Shapes Using Geodesic Lengths on a Shape Manifold
For analyzing shapes of planar, closed curves, we propose a mathematical representation of closed curves using “direction” functions (integrals of the signed curvature functions). Shapes are represented as elements of an infinite-dimensional manifold and their pairwise differences are quantified using the lengths of geodesics connecting them on this manifold. Exploiting the periodic nature of t...
متن کاملA New Closed-Form Information Metric for Shape Analysis
Shape matching plays a prominent role in the analysis of medical and biological structures. Recently, a unifying framework was introduced for shape matching that uses mixture-models to couple both the shape representation and deformation. Essentially, shape distances were defined as geodesics induced by the Fisher-Rao metric on the manifold of mixture-model represented shapes. A fundamental dra...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملVariational Properties of Geodesics in Non-reversible Finsler Manifolds and Applications
In this paper we prove some results on the number of geodesics connecting two points or two submanifolds on a non-reversible complete Finsler manifold, in particular for complete Randers metrics. We apply the abstract results to the study of light rays and timelike geodesics with fixed energy on a standard stationary Lorentzian manifold.
متن کاملDiscrete Geodesic Regression in Shape Space
A new approach for the effective computation of geodesic regression curves in shape spaces is presented. Here, one asks for a geodesic curve on the shape manifold that minimizes a sum of dissimilarity measures between given twoor three-dimensional input shapes and corresponding shapes along the regression curve. The proposed method is based on a variational time discretization of geodesics. Cur...
متن کامل